Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Med ; 14(1): 75, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35843982

RESUMEN

BACKGROUND: There is considerable evidence for the importance of the DNA methylome in metabolic health, for example, a robust methylation signature has been associated with body mass index (BMI). However, visceral fat (VF) mass accumulation is a greater risk factor for metabolic disease than BMI alone. In this study, we dissect the subcutaneous adipose tissue (SAT) methylome signature relevant to metabolic health by focusing on VF as the major risk factor of metabolic disease. We integrate results with genetic, blood methylation, SAT gene expression, blood metabolomic, dietary intake and metabolic phenotype data to assess and quantify genetic and environmental drivers of the identified signals, as well as their potential functional roles. METHODS: Epigenome-wide association analyses were carried out to determine visceral fat mass-associated differentially methylated positions (VF-DMPs) in SAT samples from 538 TwinsUK participants. Validation and replication were performed in 333 individuals from 3 independent cohorts. To assess functional impacts of the VF-DMPs, the association between VF and gene expression was determined at the genes annotated to the VF-DMPs and an association analysis was carried out to determine whether methylation at the VF-DMPs is associated with gene expression. Further epigenetic analyses were carried out to compare methylation levels at the VF-DMPs as the response variables and a range of different metabolic health phenotypes including android:gynoid fat ratio (AGR), lipids, blood metabolomic profiles, insulin resistance, T2D and dietary intake variables. The results from all analyses were integrated to identify signals that exhibit altered SAT function and have strong relevance to metabolic health. RESULTS: We identified 1181 CpG positions in 788 genes to be differentially methylated with VF (VF-DMPs) with significant enrichment in the insulin signalling pathway. Follow-up cross-omic analysis of VF-DMPs integrating genetics, gene expression, metabolomics, diet, and metabolic traits highlighted VF-DMPs located in 9 genes with strong relevance to metabolic disease mechanisms, with replication of signals in FASN, SREBF1, TAGLN2, PC and CFAP410. PC methylation showed evidence for mediating effects of diet on VF. FASN DNA methylation exhibited putative causal effects on VF that were also strongly associated with insulin resistance and methylation levels in FASN better classified insulin resistance (AUC=0.91) than BMI or VF alone. CONCLUSIONS: Our findings help characterise the adiposity-associated methylation signature of SAT, with insights for metabolic disease risk.


Asunto(s)
Resistencia a la Insulina , Índice de Masa Corporal , Metilación de ADN , Dieta , Epigénesis Genética , Epigenoma , Humanos , Resistencia a la Insulina/genética
2.
Nat Commun ; 11(1): 2797, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493999

RESUMEN

Fat distribution is an independent cardiometabolic risk factor. However, its molecular and cellular underpinnings remain obscure. Here we demonstrate that two independent GWAS signals at RSPO3, which are associated with increased body mass index-adjusted waist-to-hip ratio, act to specifically increase RSPO3 expression in subcutaneous adipocytes. These variants are also associated with reduced lower-body fat, enlarged gluteal adipocytes and insulin resistance. Based on human cellular studies RSPO3 may limit gluteofemoral adipose tissue (AT) expansion by suppressing adipogenesis and increasing gluteal adipocyte susceptibility to apoptosis. RSPO3 may also promote upper-body fat distribution by stimulating abdominal adipose progenitor (AP) proliferation. The distinct biological responses elicited by RSPO3 in abdominal versus gluteal APs in vitro are associated with differential changes in WNT signalling. Zebrafish carrying a nonsense rspo3 mutation display altered fat distribution. Our study identifies RSPO3 as an important determinant of peripheral AT storage capacity.


Asunto(s)
Adipocitos/citología , Adipocitos/metabolismo , Distribución de la Grasa Corporal , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Trombospondinas/metabolismo , Proteínas de Pez Cebra/metabolismo , Adipocitos/efectos de los fármacos , Tejido Adiposo/metabolismo , Adiposidad/genética , Adulto , Alelos , Animales , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Tamaño de la Célula/efectos de los fármacos , Doxiciclina/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Persona de Mediana Edad , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Caracteres Sexuales , Células Madre/metabolismo , Trombospondinas/genética , Relación Cintura-Cadera , Vía de Señalización Wnt/efectos de los fármacos , Pez Cebra/genética , Proteínas de Pez Cebra/genética
4.
Diabetes ; 65(11): 3362-3368, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27436124

RESUMEN

Low serum salivary amylase levels have been associated with a range of metabolic abnormalities, including obesity and insulin resistance. We recently suggested that a low copy number at the AMY1 gene, associated with lower enzyme levels, also increases susceptibility to obesity. To advance our understanding of the effect of AMY1 copy number variation on metabolism, we compared the metabolomic signatures of high- and low-copy number carriers. We analyzed, using mass spectrometry and nuclear magnetic resonance (NMR), the sera of healthy normal-weight women carrying either low-AMY1 copies (LAs: four or fewer copies; n = 50) or high-AMY1 copies (HAs: eight or more copies; n = 50). Best-fitting multivariate models (empirical P < 1 × 10-3) of mass spectrometry and NMR data were concordant in showing differences in lipid metabolism between the two groups. In particular, LA carriers showed lower levels of long- and medium-chain fatty acids, and higher levels of dicarboxylic fatty acids and 2-hydroxybutyrate (a known marker of glucose malabsorption). Taken together, these observations suggest increased metabolic reliance on fatty acids in LA carriers through ß- and ω-oxidation and reduced cellular glucose uptake with consequent diversion of acetyl-CoA into ketogenesis. Our observations are in line with previously reported delayed glucose uptake in LA carriers after starch consumption. Further functional studies are needed to extrapolate from our findings to implications for biochemical pathways.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Ácidos Grasos/metabolismo , Metabolómica/métodos , alfa-Amilasas Salivales/genética , Adulto , Metabolismo de los Hidratos de Carbono/genética , Ácidos Dicarboxílicos/metabolismo , Femenino , Glucosa/metabolismo , Humanos , Hidroxibutiratos/metabolismo , Metabolismo de los Lípidos/genética , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Análisis Multivariante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...